Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
Arch. argent. pediatr ; 121(6): e202202851, dic. 2023.
Artículo en Inglés, Español | LILACS, BINACIS | ID: biblio-1518181

RESUMEN

La leche humana es el estándar de oro para la nutrición del bebé y debe iniciarse en la primera hora de vida. La leche de vaca, de otros mamíferos o las bebidas vegetales no se deben ofrecer antes del año de vida. Sin embargo, algunos niños requieren, al menos en parte, de fórmulas infantiles. Aun con las sucesivas mejoras a lo largo de la historia mediante la incorporación de oliogosacáridos, probióticos, prebióticos, sinbióticos y postbióticos, las fórmulas infantiles siguen siendo perfectibles para reducir la brecha de salud entre los bebés amamantados y aquellos alimentados con fórmula. En este sentido, se espera que la complejidad de las fórmulas siga aumentando a medida que se conozca mejor cómo modular el desarrollo de la microbiota intestinal. El objetivo de este trabajo fue realizar una revisión no sistemática del efecto de los diferentes escenarios lácteos sobre la microbiota intestinal.


Human milk is the gold standard for infant nutrition, and breastfeeding should be started within the first hour of life. Cow's milk, other mammalian milk, or plant-based beverages should not be offered before 1 year of age. However, some infants require, at least in part, infant formulas. Even with subsequent enhancements throughout history, with the addition of oligosaccharides, probiotics, prebiotics, synbiotics, and postbiotics, infant formulas still have room for improvement in reducing the health gap between breastfed and formula-fed infants. In this regard, the complexity of infant formulas is expected to continue to increase as the knowledge of how to modulate the development of the gut microbiota is better understood. The objective of this study was to perform a non-systematic review of the effect of different milk scenarios on the gut microbiota.


Asunto(s)
Humanos , Animales , Recién Nacido , Lactante , Hipersensibilidad a la Leche , Microbioma Gastrointestinal , Lactancia Materna , Bovinos , Fórmulas Infantiles , Mamíferos , Leche Humana
2.
Acta Physiologica Sinica ; (6): 269-278, 2023.
Artículo en Chino | WPRIM | ID: wpr-981004

RESUMEN

DMRT, a gene family related to sexual determination, encodes a large group of transcription factors (DMRTs) with the double-sex and mab-3 (DM) domain (except for DMRT8), which is able to bind to and regulate DNAs. Current studies have shown that the DMRT gene family plays a critical role in the development of sexual organs (such as gender differentiation, gonadal development, germ cell development, etc.) as well as extrasexual organs (such as musculocartilage development, nervous system development, etc.). Additionally, it has been suggested that DMRTs may be involved in the cancer development and progression (such as prostate cancer, breast cancer, lung cancer, etc.). This review summarizes the research progress about the mammalian DMRTs' structure, function and its critical role in cancer development, progression and therapy (mainly in human and mice), which suggests that DMRT gene could be a candidate gene in the study of tumor formation and therapeutic strategy.


Asunto(s)
Masculino , Animales , Humanos , Ratones , Factores de Transcripción/genética , Mamíferos/metabolismo , Diferenciación Celular , Neoplasias/genética
3.
Acta Physiologica Sinica ; (6): 231-240, 2023.
Artículo en Chino | WPRIM | ID: wpr-981000

RESUMEN

Persistent neurogenesis exists in the subventricular zone (SVZ) of the ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus in the adult mammalian brain. Adult endogenous neurogenesis not only plays an important role in the normal brain function, but also has important significance in the repair and treatment of brain injury or brain diseases. This article reviews the process of adult endogenous neurogenesis and its application in the repair of traumatic brain injury (TBI) or ischemic stroke, and discusses the strategies of activating adult endogenous neurogenesis to repair brain injury and its practical significance in promoting functional recovery after brain injury.


Asunto(s)
Adulto , Animales , Humanos , Encéfalo/fisiopatología , Hipocampo/fisiopatología , Mamíferos/fisiología , Neurogénesis/fisiología , Hemorragia Encefálica Traumática/terapia , Accidente Cerebrovascular Isquémico/terapia , Recuperación de la Función , Médula Espinal/fisiopatología
4.
Chinese Medical Journal ; (24): 767-779, 2023.
Artículo en Inglés | WPRIM | ID: wpr-980828

RESUMEN

Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.


Asunto(s)
Animales , Empalme Alternativo/genética , Empalme del ARN , Empalmosomas/metabolismo , ARN Mensajero/metabolismo , Enfermedades Transmisibles/genética , Mamíferos/metabolismo
5.
Braz. j. biol ; 83: 1-13, 2023. map, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468903

RESUMEN

Brazil is the world’s richest country in biodiversity, including mammal species. In the Brazilian Cerrado biome, mammalian diversity is vast, with about 251 species, 32 of them are endemic and 22 listed as threatened species. In this work, we investigated species diversity of medium- and large-sized mammals in the private protected area RPPN Pontal do Jaburu (RPPN-PJ) and its surroundings, which is a flooded area located in an important biological corridor in the Cerrado-Amazon ecotone zone, a priority area for biodiversity conservation in Brazil. We used camera-trapping, active search (night and day), and track survey during dry season (Apr – Aug 2016). We recorded 29 mammal species, being the Carnivora order the most representative with 11 species. Regarding threat status, 35.7% of the recorded species were listed as threatened in Brazil and 32.1% worldwide. We highlight the high relative frequency of threatened species records such as Tapirus terrestris, Panthera onca, Blastocerus dichotomus, Pteronura brasiliensis, Priodontes maximus, and other, as well as the presence of the newly described aquatic mammal species Inia araguaiaensis. We stress the importance of RPPN-PJ and its surroundings for mammal conservation, which include complex habitats (wetlands) located in an important ecotone zone.


O Brasil é o país mais rico em biodiversidade no mundo, incluindo espécies de mamíferos. No bioma Cerrado, a diversidade de mamíferos é enorme, com cerca de 251 espécies, sendo 32 delas endêmicas e 22 listadas como ameaçadas de extinção. Neste estudo, investigamos a diversidade de espécies de mamíferos de médio e grande porte da RPPN Pontal do Jaburu (RPPN-PJ) e seu entorno, que é uma floresta de inundação localizada em um importante corredor biológico na zona de ecótono Cerrado-Amazonia, uma área prioritária para conservação da biodiversidade no Brasil. Os dados foram coletados por armadilhas fotográficas, busca ativa (noturna e diurna) e identificação de pegadas durante a estação seca (abril - agosto de 2016). Registramos um grande número de espécies de mamíferos (n = 29), sendo a ordem carnívora a mais representativa com 11 espécies. Com relação ao status de ameaça, 34,5% das espécies registradas foram listadas como ameaçadas na lista vermelha do Brasil e 20,7% na lista vermelha da IUCN. Destacamos a alta frequência relativa de registros de espécies ameaçadas como Tapirus terrestris, Panthera onca, Blastocerus dichotomus, Pteronura brasiliensis, Priodontes maximus, bem como a presença da recém descrita espécie de mamífero aquático Inia araguaiaensis. Nós discutimos a importância da RPPN-PJ e seus arredores para a conservação de espécies de mamíferos, onde inclui habitats complexos (áreas de inundação) localizados em uma importante zona de ecótono. Os resultados reforçam a relevância desta área para a conservação de mamíferos.


Asunto(s)
Animales , Biodiversidad , Nutrias , Mamíferos/clasificación , Panthera
6.
Braz. j. biol ; 83: e243666, 2023. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1339361

RESUMEN

Abstract Brazil is the world's richest country in biodiversity, including mammal species. In the Brazilian Cerrado biome, mammalian diversity is vast, with about 251 species, 32 of them are endemic and 22 listed as threatened species. In this work, we investigated species diversity of medium- and large-sized mammals in the private protected area RPPN Pontal do Jaburu (RPPN-PJ) and its surroundings, which is a flooded area located in an important biological corridor in the Cerrado-Amazon ecotone zone, a priority area for biodiversity conservation in Brazil. We used camera-trapping, active search (night and day), and track survey during dry season (Apr - Aug 2016). We recorded 29 mammal species, being the Carnivora order the most representative with 11 species. Regarding threat status, 35.7% of the recorded species were listed as threatened in Brazil and 32.1% worldwide. We highlight the high relative frequency of threatened species records such as Tapirus terrestris, Panthera onca, Blastocerus dichotomus, Pteronura brasiliensis, Priodontes maximus, and other, as well as the presence of the newly described aquatic mammal species Inia araguaiaensis. We stress the importance of RPPN-PJ and its surroundings for mammal conservation, which include complex habitats (wetlands) located in an important ecotone zone.


Resumo O Brasil é o país mais rico em biodiversidade no mundo, incluindo espécies de mamíferos. No bioma Cerrado, a diversidade de mamíferos é enorme, com cerca de 251 espécies, sendo 32 delas endêmicas e 22 listadas como ameaçadas de extinção. Neste estudo, investigamos a diversidade de espécies de mamíferos de médio e grande porte da RPPN Pontal do Jaburu (RPPN-PJ) e seu entorno, que é uma floresta de inundação localizada em um importante corredor biológico na zona de ecótono Cerrado-Amazonia, uma área prioritária para conservação da biodiversidade no Brasil. Os dados foram coletados por armadilhas fotográficas, busca ativa (noturna e diurna) e identificação de pegadas durante a estação seca (abril - agosto de 2016). Registramos um grande número de espécies de mamíferos (n = 29), sendo a ordem carnívora a mais representativa com 11 espécies. Com relação ao status de ameaça, 34,5% das espécies registradas foram listadas como ameaçadas na lista vermelha do Brasil e 20,7% na lista vermelha da IUCN. Destacamos a alta frequência relativa de registros de espécies ameaçadas como Tapirus terrestris, Panthera onca, Blastocerus dichotomus, Pteronura brasiliensis, Priodontes maximus, bem como a presença da recém descrita espécie de mamífero aquático Inia araguaiaensis. Nós discutimos a importância da RPPN-PJ e seus arredores para a conservação de espécies de mamíferos, onde inclui habitats complexos (áreas de inundação) localizados em uma importante zona de ecótono.. Os resultados reforçam a relevância desta área para a conservação de mamíferos.


Asunto(s)
Animales , Humedales , Mamíferos , Brasil , Especies en Peligro de Extinción , Conservación de los Recursos Naturales , Biodiversidad
7.
Journal of Integrative Medicine ; (12): 62-76, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971641

RESUMEN

OBJECTIVE@#The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.@*METHODS@#Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.@*RESULTS@#IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.@*CONCLUSION@#IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.


Asunto(s)
Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos Fitogénicos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Colchicina/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Mamíferos/metabolismo
8.
Protein & Cell ; (12): 4-16, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971606

RESUMEN

C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.


Asunto(s)
Animales , Humanos , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana , Polisacáridos/metabolismo
9.
Neuroscience Bulletin ; (6): 531-540, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971577

RESUMEN

Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.


Asunto(s)
Animales , Neuroglía/fisiología , Neuronas/fisiología , Astrocitos , Microglía/fisiología , Oligodendroglía , Mamíferos
10.
Neuroscience Bulletin ; (6): 519-530, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971575

RESUMEN

Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.


Asunto(s)
Animales , Neuroglía/metabolismo , Sistema Nervioso Central/metabolismo , Astrocitos/metabolismo , Oligodendroglía/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Antígenos/metabolismo , Mamíferos/metabolismo
11.
Neuroscience Bulletin ; (6): 213-244, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971539

RESUMEN

Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.


Asunto(s)
Ratones , Animales , Gliosis/patología , Cicatriz/patología , Traumatismos de la Médula Espinal , Astrocitos/metabolismo , Médula Espinal/patología , Fibrosis , Mamíferos , Receptores Acoplados a Proteínas G
12.
Journal of Peking University(Health Sciences) ; (6): 567-567, 2023.
Artículo en Chino | WPRIM | ID: wpr-986892

RESUMEN

Sleep is a highly conserved phenomenon in endotherms, and has a universal physiological function across all species. In mammals, sleep can be divided into two stages: rapid eye movement (REM) sleep and non-REM (NREM) sleep, which alternate in a cyclic manner. Humans spend about one-third of their lives asleep. Sufficient sleep is necessary for humans to sustain everyday functioning. Sleep plays an important role in regulating energy metabolism, immune defense, endocrine function, and the consolidation of memory process. With the development of social economy and the change of life style, sleep duration of the residents has gradually decreased and the incidence of sleep disturbances has increased. Sleep disturbances can lead to severe mental disorders, such as depression, anxiety disorders, dementia, and other mental diseases, and may increase the risk of physical diseases, such as chronic inflammation, heart disease, diabetes, hypertension, atherosclerosis and others. Maintaining good sleep is of great significance for developing social productive forces, promoting sustainable development of economic society, and is a necessary condition for carrying out the "Healthy China Strategy". The sleep research in China started in 1950s. After decades of development, researchers have made great progress in the molecular mechanisms of sleep and wakefulness, the pathogenesis of sleep disorders and the development of new therapies. With the advancement of science and technology and the public's attention to sleep, the level of clinical diagnosis and therapy of sleep disorders in China is gradually brought in line with international standards. The publication of diagnosis and treatment guidelines in the field of sleep medicine will promote the standardization of the construction. In the future, it is still necessary to promote the development of sleep medicine in the following aspects: Strengthening the professional training and discipline construction, improving the cooperation of sleep research, promoting the intelligent diagnosis and treatment of sleep disorders, and developing the new intervention strategies. Therefore, this review will comprehensively summarize the origin, current situation, and future expectations of sleep medicine in China, including discipline construction of sleep medicine, the number of sleep project grants, research findings, the status and progress of diagnosis and treatment of sleep disorders, and the development direction of sleep medicine.


Asunto(s)
Animales , Humanos , Sueño , Trastornos del Sueño-Vigilia/terapia , Aterosclerosis , China/epidemiología , Estado de Salud , Mamíferos
13.
Asian Journal of Andrology ; (6): 166-170, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971020

RESUMEN

N6-methyladenosine (m6A) is a ubiquitous RNA modification in mammals. This modification is "written" by methyltransferases and then "read" by m6A-binding proteins, followed by a series of regulation, such as alternative splicing, translation, RNA stability, and RNA translocation. At last, the modification is "erased" by demethylases. m6A modification is essential for normal physiological processes in mammals and is also a very important epigenetic modification in the development of cancer. In recent years, cancer-related m6A regulation has been widely studied, and various mechanisms of m6A regulation in cancer have also been recognized. In this review, we summarize the changes of m6A modification in prostate cancer and discuss the effect of m6A regulation on prostate cancer progression, aiming to profile the potential relevance between m6A regulation and prostate cancer development. Intensive studies on m6A regulation in prostate cancer may uncover the potential role of m6A methylation in the cancer diagnosis and cancer therapy.


Asunto(s)
Animales , Masculino , Humanos , Metilación , Adenosina/metabolismo , ARN/metabolismo , Metiltransferasas/metabolismo , Neoplasias de la Próstata , Mamíferos
14.
China Journal of Chinese Materia Medica ; (24): 1535-1545, 2023.
Artículo en Chino | WPRIM | ID: wpr-970625

RESUMEN

To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.


Asunto(s)
Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Estreptozocina/farmacología , Dieta Alta en Grasa/efectos adversos , Proteómica , Inflamación , Serina-Treonina Quinasas TOR , Autofagia , Mamíferos
15.
China Journal of Chinese Materia Medica ; (24): 569-578, 2023.
Artículo en Chino | WPRIM | ID: wpr-970525

RESUMEN

Circadian rhythm is an internal regulatory mechanism formed in organisms in response to the circadian periodicity in the environment, which modulates the pathophysiological events, occurrence and development of diseases, and the response to treatment in mammals. It significantly influences the susceptibility, injury, and recovery of ischemic stroke, and the response to therapy. Accumulating evidence indicates that circadian rhythms not only regulate the important physiological factors of ischemic stroke events, such as blood pressure and coagulation-fibrinolysis system, but also participate in the immuno-inflammatory reaction mediated by glial cells and peripheral immune cells after ischemic injury and the regulation of neurovascular unit(NVU). This article aims to link molecular, cellular, and physiological pathways in circadian biology to the clinical consequences of ischemic stroke and to illustrate the impact of circadian rhythms on ischemic stroke pathogenesis, the regulation of NVU, and the immuno-inflammatory responses. The regulation of circadian rhythm by traditional Chinese medicine is reviewed, and the research progress of traditional Chinese medicine intervention in circadian rhythm is summarized to provide a reasonable and valuable reference for the follow-up traditional Chinese medicine research and molecular mechanism research of circadian rhythm.


Asunto(s)
Animales , Accidente Cerebrovascular Isquémico , Medicina Tradicional China , Ritmo Circadiano , Coagulación Sanguínea , Presión Sanguínea , Mamíferos
16.
Chinese Journal of Biotechnology ; (12): 942-960, 2023.
Artículo en Chino | WPRIM | ID: wpr-970415

RESUMEN

Collagen, which widely exists in skin, bone, muscle and other tissues, is a major structural protein in mammalian extracellular matrix. It participates in cell proliferation, differentiation, migration and signal transmission, plays an important role in tissue support and repair and exerts a protective effect. Collagen is widely used in tissue engineering, clinical medicine, food industry, packaging materials, cosmetics and medical beauty due to its good biological characteristics. This paper reviews the biological characteristics of collagen and its application in bioengineering research and development in recent years. Finally, we prospect the future application of collagen as a biomimetic material.


Asunto(s)
Animales , Colágeno/análisis , Ingeniería de Tejidos/métodos , Matriz Extracelular/metabolismo , Materiales Biomiméticos/química , Huesos , Andamios del Tejido , Mamíferos/metabolismo
17.
Acta Physiologica Sinica ; (6): 91-98, 2023.
Artículo en Chino | WPRIM | ID: wpr-970109

RESUMEN

The ovary is the reproductive organ of female mammals, which is responsible for producing mature eggs and secreting sex hormones. The regulation of ovarian function involves the ordered activation and repression of genes related to cell growth and differentiation. In recent years, it has been found that histone posttranslational modification can affect DNA replication, damage repair and gene transcriptional activity. Some regulatory enzymes mediating histone modification are co-activators or co-inhibitors associated with transcription factors, which play important roles in the regulation of ovarian function and the development of ovary-related diseases. Therefore, this review outlines the dynamic patterns of common histone modifications (mainly acetylation and methylation) during the reproductive cycle and their regulation of gene expression for important molecular events, focusing on the mechanisms of follicle development and sex hormone secretion and function. For example, the specific dynamics of histone acetylation are important for the arrest and resumption of meiosis in oocytes, while histone (especially H3K4) methylation affects the maturation of oocytes by regulating their chromatin transcriptional activity and meiotic progression. Besides, histone acetylation or methylation can also promote the synthesis and secretion of steroid hormones before ovulation. Finally, the abnormal histone posttranslational modifications in the development of two common ovarian diseases (premature ovarian insufficiency and polycystic ovary syndrome) are briefly described. It will provide a reference basis for understanding the complex regulation mechanism of ovarian function and further exploring the potential therapeutic targets of related diseases.


Asunto(s)
Femenino , Animales , Código de Histonas , Histonas , Procesamiento Proteico-Postraduccional , Ovario , Oocitos , Mamíferos
18.
Protein & Cell ; (12): 350-368, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982548

RESUMEN

Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.


Asunto(s)
Humanos , Ratones , Ratas , Proliferación Celular , Corazón/fisiología , Mamíferos , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Pericardio/metabolismo , Análisis de la Célula Individual , Pez Cebra/metabolismo
19.
International Journal of Oral Science ; (4): 19-19, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982476

RESUMEN

Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.


Asunto(s)
Animales , Ratones , Regeneración Ósea , Citocinas/metabolismo , Interleucina-4/uso terapéutico , Macrófagos/fisiología , Mamíferos , Osteogénesis , Periodontitis/tratamiento farmacológico
20.
Neuroscience Bulletin ; (6): 1157-1172, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982467

RESUMEN

Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.


Asunto(s)
Animales , Protones , Canales Iónicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Encéfalo/metabolismo , NADPH Oxidasas , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA